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For steady laminar flow with closed streamlines Batchelor (1956) has shown how an 
integral condition arising from the effect of viscosity can be used with the inviscid 
flow equations to determine the vorticity distribution when the Reynolds number is 
large. Here a condition analogous to that used by Batchelor is derived for a class of 
flows with helical streamlines. An exact integral condition relating the constant 
axial pressure gradient and the viscous terms is obtained, which when combined with 
the inviscid flow equations leads to the result that the axial velocity is proportional 
to the stream function for the motion in the plane normal to the axial velocity. 

1. Introduction 

around a closed streamline we obtain the exact result (Batchelor 1956) 
When the equations of steady motion for a viscous incompressible fluid are integrated 

jcurlw.ds = 0, (1 .1)  

wherew is the vorticity and d s  is the line element in the streamline. At large Reynolds 
numbers the inviscid equations of motion may be used to evaluate the integrand in 
(1 .1)  and thereby determine the variation of vorticity across the closed Streamlines 
of an inviscid flow. Batchelor successfully applied this technique to several classes of 
flows with closed streamlines. Here we apply a similar technique to determine the 
vorticity distribution in an inviscid region of a class of flows which do not have closed 
streamlines. 

The flow studied is constructed from a two-dimensional flow in a confined region 
by imposing an axial velocity normal to the plane of the two-dimensional motion, 
such that the velocity components are independent of the co-ordinate in the axial 
direction. Thus, the streamlines of the resultant motion are helical. An example 
typical of the flows to be considered is fully developed flow in a circular pipe which 
is spinning about its longitudinal axis. As the velocity is independent of the axial 
co-ordinate the axial pressure gradient is constant, and the two-dimensional flow 
in the cross-section (in this example, rigid body rotation) is independent of the axial 
velocity. 

For flows where the streamlines are not closed (1 .1)  is inapplicable. However it is 
still possible to integrate the equations of motion along a streamline to obtain a 
relationship between the pressure and viscous forces. As the flow in the cross-section 
is independent of the axial velocity, the integral relationship splitsinto two independent 
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integral conditions: one which represents properties of the axial velocity; and the 
other is the same as that used by Batchelor for two-dimensional flows with closed 
streamlines. By combining these exact results with the approximate inviscid flow 
equations we can determine the vorticity distribution in a helical flow a t  large Reynolds 
number. 

2. Derivation of integral conditions 
Consider a steady two-dimensional flow in a confined region, the motion being 

generated by the boundaries. A stream function y? can be introduced, and in the 
plane of the motion a useful co-ordinate system is the orthogonal curvilinear co- 
ordinates (y?, g), the lines f = constant being everywhere normal to the closed lines 
$ = constant. The axis normal to the $, f plane is the z axis and, by definition, the 
velocity components are independent of z. Now impose a velocity in the z direction 
such that the velocity components in the plane of the previously existing two- 
dimensional flow are unaltered. This is achieved if the axial velocity is independent 
of z and the pressure p has the form 

where G is a constant and p is the density of the fluid. The condition on the axial 
velocity comes from continuity requirements, and the equations of motion dictate the 
form of the pressure. 

The equation of steady motion for a viscous, incompressible fluid is 

v x w  = VH+vcurlw, (2.2) 

wherew is the vorticity, and is the curl of the velocity field v, and v is the kinematic 
viscosity of the fluid. The quantity H is the total head and is given by 

4 
1 

H = -P+&v.v. 
P 

In the (y?, f ,  z )  co-ordinate system the velocity vector v is [0, q,  w ]  and the infinit- 
esimal line element is [dy?/q, h,dc, dz],  where h, is an unknown function of y? and f .  
The vorticity is then 

When the viscous forces are negligible (2.2) may be replaced by the statement 
that H is constant on streamlines. From (2.1) the total head can be written 

When G and w are both zero the flow is two-dimensional and H becomes 
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in the region of small viscous forces. By definition, G and w do not alter the flow 
described by @, so that in the region of small viscous forces (2.4) becomes 

H = H*(@)-Gz+~w’,  (2.5) 

which must be constant on streamlines. 
The inviscid equations give no information as to the variation of H across the 

streamlines. To obtain such information we follow Batchelor (1956) and derive an 
exact result by integrating (2.2) along a streamline. The end points A and B of the 
path of integration are chosen so that one circuit of the projection of the streamline 
in the z-plane is made. We obtain 

/ABVH.ds+v~ABcurlo.ds = 0) (2.6) 

where d s  is the line element in the streamline. 
The first integral in (2.6) is independent of the path of integration, and so may be 

taken along the straight line AB, which, from the definition of the endpoints, is in the 
direction of the z axis. Thus only aH/az will contribute to this term. The second 
integral may be expanded by expressing d s  in terms of the ($, 6,  z )  co-ordinate system, 
where the streamline element is [0, h,d& dz] and the equation of the streamline is 

- 
Thus (2.6) becomes 

- G 132 + v!” (z (w, h,) - a p)) dz + v ( - q 2) h, d6 = 0, (2.8) 
Ah’ a@ a6 !? 

where the components of the vorticity wl, w, and w3 are given by (2.3). 
The path of integration for the last term in (2.8) is the projection of the streamline 

onto the plane z = constant, i.e. the closed curve II. = constant, and clearly this term 
is independent of both G and w. Thus (2.8) gives the two independent relationships 

and (2.10) 

Both (2.9) and (2.10) are exact results. Equation (2.9) was derived by Batchelor 
(1956) for two-dimensional flow with closed streamlines, and, when the path of inte- 
gration lies wholly in the region of small viscous forces, the inviscid flow approximation 
w3 = wg(@) may be used with (2.9) to derive the result that w3($) is a constant, say 
y. We are interested in the conditions imposed by (2.10) on G and w as v - t  0, when the 
streamline path of integration lies wholly ih the region of small viscous forces. Before 
turning away from the flow in the cross-section we note the result, given by (2.3): 

a constant. (2.11) 
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A more useful form of (2.10) can be obtained by using (2.7) to replace the z integrals 
by integrals around the closed contour @ = constant. The balance expressed by 
(2.10) is then 

(2.12) 

where the path of integration is in the effectively inviscid flow. By definition, velocity 
gradients remain O( 1) in the region of small viscous forces as v + 0, and thus we can 
discard the possibility that large velocity gradients are responsible for the balance of 
terms in (2.12). Therefore, we have the ordering 

G - O(vw/L2) as v+O, (2.13) 

where L is a typical length scale. Using (2.13) in (2.5) and letting v+ 0 we obtain 

H = H*($)  + W($, E l ,  (2.14) 

and for H to be constant on streamlines in the inviscid region w must be a function 
of @ only, w($). The neglect of the pressure term, -Gz, in going from (2.5) to (2.14) 
is consistent with the inviscid result that H is constant on streamlines. Essentially 
the inviscid approximation is an energy equation obtained by neglecting the O(v)  
viscous terms in the momentum equation as v+ 0. Here G is O(v)  compared to other 
terms in (2.5) and so may be neglected. 

Substituting w = w(@) in (2.3) and using this to simplify (2.12) we obtain 

The non-trivial solution of (2.15) is 

(2.16) 

(2.16) 

where C and D are arbitrary constants and (2.11) has been used to simplify the fist 
term. 

3. Discussion 
The above result for the axial velocity distribution (and the earlier result (2.11) 

for the flow in the cross-section) has been derived assuming the streamline path of 
integration was wholly in the region of ‘small viscous forces’. The definition of the 
regions of ‘small viscous forces ’ requires some clarification. Batchelor (1956) defines 
these regions asparts of the flow where the viscousforces, suitablynon-dimensionalized, 
are small compared with unity, and concludes that this is usually equivalent to the 
statement that ‘ viscous forces are small compared with pressure forces ’. As the integral 
condition (2.10) requires pressure and viscous force to be the same magnitude, we see 
that this latter description of an effectively inviscid flow is inappropriate. Thus 
‘small viscous forces) must be interpreted in terms of the first of Batchelor’s des- 
crip tions . 

For the case G = 0, the equation for w is equivalent to the equation for temperature 
in two-dimensional heat transfer. When the motion has uniform vorticity, then the 
inviscid approximation for the temperature is well known (see Burggraf 1966) and 
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agrees with (2.16) with G = 0. In  the heat transfer context, non-zero G may be inter- 
preted as a uniform distribution of heat sources within the fluid, and in this case the 
inviscid approximation for the temperature distribution does not appear to have been 
previously published. Thus, as well as giving the axial velocity distribution in an 
inviscid helical flow, (2.16) also gives the inviscid approximation to the temperature 
field in a two-dimensional flow with uniform distribution of heat sources. 

The unknown constants C and D in (2.16) will in general be found by examining 
the flow surrounding the inviscid region; matching the two regions should then 
determine C and D. Apart from matching conditions, there is also the condition that 
w must be regular which can be used to find the unknown constants. In  particular, 
in any inviscid region where + has a local extremum C must be zero for w to be regular. 
This is readily shown by noting that, in a flow with uniform vorticity, the circulation 
f h,qdf  along a line $ = constant is O($- $m) as $+ $m, the local extremum. Thus 
the integral in (2.16) is logarithmically singular a t  @ = $m. 

We conclude by applying (2.16) to the simple helical flow resulting from the fully 
developed motion of a viscous fluid inside an infinitely long circular cylinder. In  
cylindrical polar co-ordinates ( r ,  0, z )  the radial velocity is - ( l /r)  (a$-/a@) and the 
azimuthal velocity is a$/ar, where $ is the streamfunction of $ 2. Thus the axial 
comDonent of vorticitv is 

The axial velocity w is generated by a constant pressure gradient, ap/az = - G, and 
on the surface of the cylinder we impose the conditions 

and 
(3.2) 

$ = 0, 

w = 0, 

a$/& = SZu(1 +€sine), 

where the constant SZ has the units of angular velocity. 
For non-zero e Burggraf (1966) has shown that as v+ 0 (a, $2 fixed), the flow in the 

cross-section develops an inviscid core with uniform vorticity surrounded by a viscous 
boundary layer attached to  the cylinder. As usual, the boundary-layer thickness is 
O(v4) and in the layer a/ar is O(v-4). The streamfunction in the core is 

$1 = - * W - r 2 ) ,  (3.3) 

where the (constant) axial vorticity wg is 6, which is given by (Wood 1957) 

6 = a( 1 + + € 2 ) t .  

Direct application of (2.16) shows that the inviscid approximation for the axial 

w1= - G$-,/vc + D, velocity is 

where C has been set to zero to make w1 regular. As the shear stress on r = u must 
balance the axial pressure gradient, we find that w - O(v4) in the boundarylayer. 
Thus, as $1+0 as r+u, matching the core and boundary layer leads to the result 
that D - O(vi ) ,  and hence the leading-order axial velocity distribution is 
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which is just Hagen-Poiseuille flow. This simple axial velocity distribution is due to the 
simple form of the inviscid motion in the cross-section. A more complicated example, 
where (2.16) greatly simplifies the determination of the axial velocity, is given in 
Blennerhassett (1976). Finally we note that, when E = 0, the exact solution of the 
governing equations is givep by (3.3) and (3.4)) and then $l and w1 describe the helical 
flow in a spinning pipe. 
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